Agent-based Identification and Control of Voltage Emergency Situations
نویسندگان
چکیده
Changing dynamics of power systems caused by the migration from conventional to distributed energy sources increase the risk of blackouts due to voltage instability, especially in case of unforeseen network conditions (e.g., (N-k)-cases). To enable a both secure and efficient power supply, novel monitoring and emergency control systems for the identification of voltage emergency situations as well as the execution of control actions are required that react reliably in due time and adaptively in case of changing network situations. This paper presents a distributed agent-based approach to counteract voltage instability that is based solely on local measurements and limited inter-agent communication. Distributed agents located at substations in the (sub-)transmission network monitor distribution and transmission voltages as well as load tap changer positions and are able to autonomously curtail load in case system stability is endangered. The applicability of the approach is demonstrated in a co-simulation environment interfacing the multi-agent system with a dynamic power system simulation. The presented approach allows for an early detection of voltage instability as well as a coordinated execution of available control actions.
منابع مشابه
Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems
This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...
متن کاملPhotovoltaic Microgrids Control by the Cooperative Control of Multi-Agent Systems
This paper presents a cooperative control which is applied to the secondary control of a microgrid controlled via a multi-agent scheme. Balancing power that leads to voltage and frequency stability in a microgrid is essential. The voltage and frequency regulations are limiting within the specified limits and conveying them to their nominal values. Limiting and conveying the voltage and frequenc...
متن کاملA New Control for Series Compensation of UPQC to Improve Voltage Sag/Swell
Voltage sag/swell is one of the most frequently power quality problems which affects the power systems with sensitive loads. The unified power quality conditioner (UPQC) is capable of mitigating the effect of voltage sag/swell at the load or point of common coupling (PCC). In this paper, a new control of UPQC is proposed based on combining the sag detection and voltage injection established on ...
متن کاملDevelopment of a human error risk assessment model in high priority emergency situation using TOPSIS, FUZZY-AHP and CREAM method
Introduction: Emergencies are unforeseen and unpredictable situations. In these situations, people’s performance is affected by various factors that cause stress. People’s performance in such situations can also affect human error probability. The purpose of this study was to evaluate human error in emergency situations based on the fuzzy CREAM and Fuzzy Analytical Hierarchy Process (FAHP). Ma...
متن کاملIdentification and Description of 1-1-5 Emergency Operators\' Experiences in Kerman, Iran (2019); a Qualitative Research
Background: Emergency operators are responsible for determining the nature of callers' problems, responding to them, and dispatching an appropriate rescue team. In addition, they provide instructions on cardiopulmonary resuscitation, bleeding control, airway management, and other life-saving procedures. Emergency operators are often faced with difficult situations. This study aims to highlight ...
متن کامل